If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7y^2=49
We move all terms to the left:
7y^2-(49)=0
a = 7; b = 0; c = -49;
Δ = b2-4ac
Δ = 02-4·7·(-49)
Δ = 1372
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1372}=\sqrt{196*7}=\sqrt{196}*\sqrt{7}=14\sqrt{7}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{7}}{2*7}=\frac{0-14\sqrt{7}}{14} =-\frac{14\sqrt{7}}{14} =-\sqrt{7} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{7}}{2*7}=\frac{0+14\sqrt{7}}{14} =\frac{14\sqrt{7}}{14} =\sqrt{7} $
| -12u+12u-5u-6u=6 | | 3x+19+2x+41=180 | | 3(b+4)=33 | | 16-3q=-2 | | 13w+52-12w=18 | | 12=1/3k | | -d+6=-9 | | -11(2k+14)=11(-4k-17)+55k | | 4(2x+3)=8x+-12 | | 3x-(2x-2)=4 | | -5h-3h+9h+-10h-8h=2 | | r+4=22 | | 0=16t^2+101t+10 | | 5w+2–3w=10 | | b/3-15=18 | | 4(2x+3)=8x+-8x | | -5=j/3-9 | | 4f-16=20f-18 | | 3x+19=60 | | p-3=-16 | | -23=-2x+5x+77 | | 4m+-12m-7m=-11 | | 18g-9+6=-6 | | 4(2x+3)=8x+8x | | 5x/12=5/6 | | -80=k/7+71 | | 3x+4x-5x-2x+2x=6 | | (y-1)/4=-12 | | 17j+10-6j=4 | | 134x(4+1=0) | | 1=j/1+1 | | 21=2x+2 |